Molecular hybridization modification improves the stability and immunomodulatory activity of TP5 peptide

分子杂交修饰提高TP5肽的稳定性和免疫调节活性

阅读:7
作者:Junyong Wang #, Yuan Tang #, Xuelian Zhao, Zetao Ding, Marhaba Ahmat, Dayong Si, Rijun Zhang, Xubiao Wei

Abstract

Thymopentin (TP5) plays an important role in host immunomodulation, yet its bioavailability is significantly limited by its short half-life. YW12D is a peptide with strong stability but relatively weak immunoactivity. Tuning the physicochemical properties of such molecules may yield synthetic molecules displaying optimal stability, safety and enhanced immunological activity. Here, natural peptides were modified to improve their activity by hybridization strategies. A hybrid peptide YW12D-TP5 (YTP) that combines TP5 and YW12D is designed. The half-life of YTP in plasma is significantly longer than that of YW12D and TP5. YTP also displays an improved ability to protect the host from CTX-induced weight loss and thymus and spleen indices decrease than YW12D and TP5. In addition, YTP promotes dendritic cell maturation and increases the expression of cytokines IL-1β, IL-6, TNF-α and immunoglobulins IgA, IgG, and IgM. A combination of antibody-specific blocking assay, SPR, molecular dynamics simulations and western blotting suggest that the immunomodulatory effect of YTP is associated with its activation of the TLR2-NF-кB signaling axis. In sum, we demonstrate that peptide hybridization is an effective strategy for redirecting biological activity to generate novel bioactive molecules with desired properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。