Effect of sugammadex, rocuronium and sevoflurane on oxidative stress and apoptosis in cerebral ischemia reperfusion model in rats

舒更葡糖、罗库溴铵和七氟醚对大鼠脑缺血再灌注模型氧化应激及细胞凋亡的影响

阅读:8
作者:Hakan Ciftci, Nilay Tas, Zubeyir Cebeci, Sibel Kokturk, Selma Cirrik, Tevfik Noyan

Conclusion

The apoptotic effect of sugammadex was lowest compared to other agent groups, and it did not increase oxidative damage as much as the other groups.

Methods

Rats were divided into 7 groups; Group 1 (Control), Group 2 (Sham), Group 3 (Sevoflurane), Group 4 (Sugammadex), Group 5 (Sevoflurane + Rocuronium), Group 6 (Sevoflurane + Sugammadex), Group 7 (Sevoflurane + Rocuronium + Sugammadex). Brain tissues of rats with cerebral I/R damage with bilateral carotid occlusion were removed. Tissue Malondialdehyde (MDA), Myeloperoxidase (MPO), and Superoxide dismutase (SOD) levels were examined with ELISA and apoptosis was examined by Caspase-3.

Objective

Cerebral ischemia-reperfusion (I/R) injury causes neurological dysfunction and cell death. Sugammadex, as a large molecule, is normally difficult to pass through the blood-brain barrier (BBB). In ischemia, molecules can pass into the brain tissue. In this study, we aimed to evaluate the effect of sugammadex in the presence of cerebral I/R damage in rats with a general anesthesia model with sevoflurane and rocuronium.

Results

The number of caspase-3 positive cells decreased the most in Group 4 compared to the other groups. Group 4's mean MDA and MPO levels were lower than Group 2. There was no significant difference in terms of SOD levels.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。