Effect of sugammadex, rocuronium and sevoflurane on oxidative stress and apoptosis in cerebral ischemia reperfusion model in rats

舒更葡糖、罗库溴铵和七氟醚对大鼠脑缺血再灌注模型氧化应激及细胞凋亡的影响

阅读:16
作者:Hakan Ciftci, Nilay Tas, Zubeyir Cebeci, Sibel Kokturk, Selma Cirrik, Tevfik Noyan

Conclusion

The apoptotic effect of sugammadex was lowest compared to other agent groups, and it did not increase oxidative damage as much as the other groups.

Methods

Rats were divided into 7 groups; Group 1 (Control), Group 2 (Sham), Group 3 (Sevoflurane), Group 4 (Sugammadex), Group 5 (Sevoflurane + Rocuronium), Group 6 (Sevoflurane + Sugammadex), Group 7 (Sevoflurane + Rocuronium + Sugammadex). Brain tissues of rats with cerebral I/R damage with bilateral carotid occlusion were removed. Tissue Malondialdehyde (MDA), Myeloperoxidase (MPO), and Superoxide dismutase (SOD) levels were examined with ELISA and apoptosis was examined by Caspase-3.

Objective

Cerebral ischemia-reperfusion (I/R) injury causes neurological dysfunction and cell death. Sugammadex, as a large molecule, is normally difficult to pass through the blood-brain barrier (BBB). In ischemia, molecules can pass into the brain tissue. In this study, we aimed to evaluate the effect of sugammadex in the presence of cerebral I/R damage in rats with a general anesthesia model with sevoflurane and rocuronium.

Results

The number of caspase-3 positive cells decreased the most in Group 4 compared to the other groups. Group 4's mean MDA and MPO levels were lower than Group 2. There was no significant difference in terms of SOD levels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。