PROTECTIVE EFFECTS OF HUMANIN-G IN HEMORRHAGIC SHOCK IN FEMALE MICE VIA AMPKα1-INDEPENDENT MECHANISMS

人源化蛋白酶G通过AMPKα1非依赖机制对雌性小鼠失血性休克的保护作用

阅读:5
作者:Monica L Wagner, Allison Ammann, Giovanna Piraino, Vivian Wolfe, Michael O'Connor, Patrick Lahni, Assem Ziady, Basilia Zingarelli

Conclusions

Our data indicate that circulating levels of humanin increase during hemorrhagic shock in AMPKα1-independent fashion as a defense mechanism to counteract metabolic derangement and that administration of humanin-G affords beneficial effects through STAT3 activation even in the absence of a functional AMPKα1.

Methods

AMPKα1 wild-type (WT) and knockout (KO) female mice were subjected to hemorrhagic shock followed by resuscitation with blood and lactated Ringer's solution. In short-term studies, mice were treated with humanin-G or vehicle and sacrificed at 3 h after resuscitation; in survival studies, mice were treated with PEGylated humanin-G and monitored for 7 days.

Results

Compared with the vehicle WT group, KO mice exhibited severe hypotension, cardiac mitochondrial damage, and higher plasma levels of Th17 cytokines but had similar lung injury and similar plasma elevation of endogenous humanin. Treatment with humanin-G improved lung injury, mean arterial blood pressure, and survival in both WT and KO mice, without affecting systemic cytokine or humanin levels. Humanin-G also ameliorated cardiac mitochondrial damage and increased adenosine triphosphate levels in KO mice. Beneficial effects of humanin-G were associated with lung cytoplasmic and nuclear activation of the signal transducer and activator of transcription-3 (STAT3) in AMPKα1-independent manner with marginal or no effects on mitochondrial STAT3 and complex I subunit GRIM-19. Conclusions: Our data indicate that circulating levels of humanin increase during hemorrhagic shock in AMPKα1-independent fashion as a defense mechanism to counteract metabolic derangement and that administration of humanin-G affords beneficial effects through STAT3 activation even in the absence of a functional AMPKα1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。