Design of a new nanocomposite based on Keggin-type [ZnW12O40]6- anionic cluster anchored on NiZn2O4 ceramics as a promising material towards the electrocatalytic hydrogen storage

设计一种基于 Keggin 型 [ZnW12O40]6- 阴离子簇的新型纳米复合材料,将其锚定在 NiZn2O4 陶瓷上,作为电催化储氢的有前途的材料

阅读:5
作者:Mohammad Ali Rezvani, Hadi Hassani Ardeshiri, Alireza Gholami, Masomeh Aghmasheh, Amir Doustgani

Abstract

Extensive research efforts have been dedicated to developing electrode materials with high capacity to address the increasing complexities arising from the energy crisis. Herein, a new nanocomposite was synthesized via the sol-gel method by immobilizing K6ZnW12O40 within the surface of NiZn2O4. ZnW12O40@NiZn2O4 was characterized by FT-IR, UV-Vis, XRD, SEM, EDX, BET, and TGA-DTG methods. The electrochemical characteristics of the materials were examined using cyclic voltammogram (CV) and charge-discharge chronopotentiometry (CHP) techniques. Multiple factors affecting the hydrogen storage capacity, including current density (j), surface area of the copper foam, and the consequences of repeated cycles of hydrogen adsorption-desorption were evaluated. The initial cycle led to an impressive hydrogen discharge capability of 340 mAh/g, which subsequently increased to 900 mAh/g after 20 cycles with a current density of 2 mA in 6.0 M KOH medium. The surface area and the electrocatalytic characteristics of the nanoparticles contribute to facilitate the formation of electrons and provide good diffusion channels for the movement of electrolyte ions throughout the charge-discharge procedure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。