Hypoxia-inducible factor 1α is required to establish the larval glycolytic program in Drosophila melanogaster

缺氧诱导因子 1α 是果蝇幼虫糖酵解程序建立所必需的

阅读:7
作者:Yasaman Heidarian, Tess D Fasteen, Liam Mungcal, Kasun Buddika, Nader H Mahmoudzadeh, Travis Nemkov, Angelo D'Alessandro, Jason M Tennessen

Abstract

The rapid growth that occurs during Drosophila larval development requires a dramatic rewiring of central carbon metabolism to support biosynthesis. Larvae achieve this metabolic state, in part, by coordinately up-regulating the expression of genes involved in carbohydrate metabolism. The resulting metabolic program exhibits hallmark characteristics of aerobic glycolysis and establishes a physiological state that supports growth. To date, the only factor known to activate the larval glycolytic program is the Drosophila Estrogen-Related Receptor (dERR). However, dERR is dynamically regulated during the onset of this metabolic switch, indicating that other factors must be involved. Here we discover that Sima, the Drosophila ortholog of Hif1α, is also essential for establishing the larval glycolytic program. Using a multi-omics approach, we demonstrate that sima mutants fail to properly activate aerobic glycolysis and die during larval development with metabolic defects that phenocopy dERR mutants. Moreover, we demonstrate that dERR and Sima/Hif1α protein accumulation is mutually dependent, as loss of either transcription factor results in decreased abundance of the other protein. Considering that the mammalian homologs of ERR and Hif1α also cooperatively regulate aerobic glycolysis in cancer cells, our findings establish the fly as a powerful genetic model for studying the interaction between these two key metabolic regulators.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。