A large intrinsically disordered region in SKIP and its disorder-order transition induced by PPIL1 binding revealed by NMR

NMR 揭示了 SKIP 中的大型内在无序区域及其由 PPIL1 结合引起的无序-有序转变

阅读:5
作者:Xingsheng Wang, Shaojie Zhang, Jiahai Zhang, Xiaojuan Huang, Chao Xu, Weiwei Wang, Zhijun Liu, Jihui Wu, Yunyu Shi

Abstract

Intrinsically disordered proteins or protein regions play an important role in fundamental biological processes. During spliceosome activation, a large structural rearrangement occurs. The Prp19 complex and related factors are involved in the catalytic activation of the spliceosome. Recent mass spectrometric analyses have shown that Ski interaction protein (SKIP) and peptidylprolyl isomerase-like protein 1 (PPIL1) are Prp19-related factors that constitute the spliceosome B, B*, and C complexes. Here, we report that a highly flexible region of SKIP (SKIPN, residues 59-129) is intrinsically disordered. Upon binding to PPIL1, SKIPN undergoes a disorder-order transition. A highly conserved fragment of SKIP (residues 59-79) called the PPIL1-binding fragment (PBF) was sufficient to bind PPIL1. The structure of PBF.PPIL1 complex, solved by NMR, shows that PBF exhibits an ordered structure and interacts with PPIL1 through electrostatic and hydrophobic interactions. Three subfragments in the PBF (residues 59-67, 68-73, and 74-79) show hook-like backbone structure, and interactions between these subfragments are necessary for PBF.PPIL1 complex formation. PPIL1 is a cyclophilin family protein. It is recruited by SKIP into the spliceosome by a region other than the peptidylprolyl isomerase active site. This enables the active site of PPIL1 to remain open in the complex and still function as a peptidylprolyl cis/trans-isomerase or molecular chaperon to facilitate the folding of other proteins in the spliceosomes. The large disordered region in SKIP provides an interaction platform. Its disorder-order transition, induced by PPIL1 binding, may adapt the requirement for a large structural rearrangement occurred in the activation of spliceosome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。