VEGF Upregulates EGFR Expression to Stimulate Chemotactic Behaviors in the rMC-1 Model of Müller Glia

VEGF 上调 EGFR 表达以刺激穆勒胶质细胞 rMC-1 模型中的趋化行为

阅读:6
作者:Juan S Peña, Maribel Vazquez

Abstract

Progressive vision loss in adults has become increasingly prevalent worldwide due to retinopathies associated with aging, genetics, and epigenetic factors that damage the retinal microvasculature. Insufficient supply of oxygen and/or nutrients upregulates factors such as vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF), which can induce abnormal angiogenesis and damage the structural arrangement of the retinal blood barrier (BRB). Müller glia (MG) regulate the diffusion of essential compounds across the BRB and respond to retinal insults via reactive gliosis, which includes cell hypertrophy, migration, and/or proliferation near areas of elevated VEGF concentration. Increasing concentrations of exogenous VEGF, upregulated by retinal pigmented epithelium cells, and endogenous epidermal growth factor receptor (EGF-R) stimulation in MG, implicated in MG proliferative and migratory behavior, often lead to progressive and permanent vision loss. Our project examined the chemotactic responses of the rMC-1 cell line, a mammalian MG model, toward VEGF and EGF signaling fields in transwell assays, and within respective concentration gradient fields produced in the glia line (gLL) microfluidic system previously described by our group. rMC-1 receptor expression in defined ligand fields was also evaluated using quantitative polymerase chain reaction (qPCR) and immunocytochemical staining. Results illustrate dramatic increases in rMC-1 chemotactic responses towards EGF gradient fields after pre-treatment with VEGF. In addition, qPCR illustrated significant upregulation of EGF-R upon VEGF pre-treatment, which was higher than that induced by its cognate ligand, EGF. These results suggest interplay of molecular pathways between VEGF and EGF-R that have remained understudied in MG but are significant to the development of effective anti-VEGF treatments needed for a variety of retinopathies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。