A Protein-Based Biosensor for Detecting Calcium by Magnetic Resonance Imaging

一种通过磁共振成像检测钙的蛋白质生物传感器

阅读:7
作者:Harun F Ozbakir, Austin D C Miller, Kiara B Fishman, André F Martins, Tod E Kippin, Arnab Mukherjee

Abstract

Calcium-responsive contrast agents for magnetic resonance imaging (MRI) offer a promising approach for noninvasive brain-wide monitoring of neural activity at any arbitrary depth. Current examples of MRI-based calcium probes involve synthetic molecules and nanoparticles, which cannot be used to examine calcium signaling in a genetically encoded form. Here, we describe a new MRI sensor for calcium, based entirely on a naturally occurring calcium-binding protein known as calprotectin. Calcium-binding causes calprotectin to sequester manganese ions, thereby limiting Mn2+ enhanced paramagnetic relaxation of nearby water molecules. We demonstrate that this mechanism allows calprotectin to alter T1 and T2 based MRI signals in response to biologically relevant calcium concentrations. The resulting response amplitude, i.e., change in relaxation time, is comparable to existing MRI-based calcium sensors as well as other reported protein-based MRI sensors. As a preliminary demonstration of its biological applicability, we used calprotectin to detect calcium in a lysed hippocampal cell preparation as well as in intact Chinese hamster ovary cells treated with a calcium ionophore. Calprotectin thus represents a promising path toward noninvasive imaging of calcium signaling by combining the molecular and cellular specificity of genetically encodable tools with the ability of MRI to image through scattering tissue of any size and depth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。