Conformation state-specific monobodies regulate the functions of flexible proteins through conformation trapping

构象状态特异性单体通过构象捕获来调节柔性蛋白质的功能

阅读:6
作者:Ibuki Nakamura, Hiroshi Amesaka, Mizuho Hara, Kento Yonezawa, Keisuke Okamoto, Hironari Kamikubo, Shun-Ichi Tanaka, Takashi Matsuo

Abstract

Synthetic binding proteins have emerged as modulators of protein functions through protein-protein interactions (PPIs). Because PPIs are influenced by the structural dynamics of targeted proteins, investigating whether the synthetic-binders-based strategy is applicable for proteins with large conformational changes is important. This study demonstrates the applicability of monobodies (fibronectin type-III domain-based synthetic binding proteins) in regulating the functions of proteins that undergo tens-of-angstroms-scale conformational changes, using an example of the A55C/C77S/V169C triple mutant (Adktm ; a phosphoryl transfer-catalyzing enzyme with a conformational change between OPEN/CLOSED forms). Phage display successfully developed monobodies that recognize the OPEN form (substrate-unbound form), but not the CLOSED form of Adktm . Two OPEN form-specific clones (OP-2 and OP-4) inhibited Adktm kinase activity. Epitope mapping with a yeast-surface display/flow cytometry indicated that OP-2 binds to the substrate-entry side of Adktm , whereas OP-4 binding occurs at another site. Small angle X-ray scattering coupled with size-exclusion chromatography (SEC-SAXS) indicated that OP-4 binds to the hinge side opposite to the substrate-binding site of Adktm , retaining the whole OPEN-form structure of Adktm . Titration of the OP-4-Adktm complex with Ap5 A, a transition-state analog of Adktm , showed that the conformational shift to the CLOSED form was suppressed although Adktm retained the OPEN-form (i.e., substrate-binding ready form). These results show that OP-4 captures and stabilizes the OPEN-form state, thereby affecting the hinge motion. These experimental results indicate that monobody-based modulators can regulate the functions of proteins that show tens-of-angstroms-scale conformational changes, by trapping specific conformational states generated during large conformational change process that is essential for function exertion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。