Experimental and TDDFT materials simulation of thermal characteristics and entropy optimized of Williamson Cu-methanol and Al2O3-methanol nanofluid flowing through solar collector

威廉姆森铜-甲醇和 Al2O3-甲醇纳米流体流经太阳能集热器的热特性和熵优化的实验和 TDDFT 材料模拟

阅读:5
作者:Wasim Jamshed, Mohamed R Eid, Ahmed F Al-Hossainy, Zehba Raizah, El Sayed M Tag El Din, Tanveer Sajid

Abstract

Current investigation emphasizes the evaluation of entropy in a porous medium of Williamson nanofluid (WNF) flow past an exponentially extending horizontal plate featuring Parabolic Trough Solar Collector (PTSC). Two kinds of nanofluids such as copper-methanol (Cu-MeOH) and alumina-methanol (Al2O3-MeOH) were tested, discussed and plotted graphically. The fabricated nanoparticles are studied using different techniques, including TDDFT/DMOl3 method as simulated and SEM measurements as an experimental method. The centroid lengths of the dimer are 3.02 Å, 3.27 Å, and 2.49 Å for (Cu-MeOH), (Al2O3-MeOH), and (Cu-MeOH-αAl-MOH), respectively. Adequate similarity transformations were applied to convert the partial differential equation (PDEs) into nonlinear ordinary differential equations (ODEs) with the corresponding boundary constraints. An enhancement in Brinkmann and Reynolds numbers increases the overall system entropy. WNF parameter enhances the heat rate in PTSC. The thermal efficiency gets elevated for Cu-MeOH than that of Al2O3-MeOH among 0.8% at least and 6.6% in maximum for varying parametric values.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。