Characterization of the Pseudomonas aeruginosa transcriptional response to phenylalanine and tyrosine

铜绿假单胞菌对苯丙氨酸和酪氨酸的转录反应的表征

阅读:6
作者:Gregory C Palmer, Kelli L Palmer, Peter A Jorth, Marvin Whiteley

Abstract

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen often associated with chronic infections in the lungs of individuals with the heritable disease cystic fibrosis (CF). Previous work from our laboratory demonstrated that aromatic amino acids within CF lung secretions (sputum) not only serve as carbon and energy sources but also enhance synthesis of the cell signaling molecule Pseudomonas quinolone signal (PQS). The present study investigates the role of the aromatic amino acid-responsive regulator PhhR in mediating these phenotypes. Transcriptome analysis revealed that PhhR controls four putative transcriptional units (phhA, hpd, hmgA, and dhcA) involved in aromatic amino acid catabolism; however, genes involved in PQS biosynthesis were unaffected. The phhA, hpd, hmgA, and dhcA promoters were mapped by primer extension, and purified His(6)-PhhR was shown to bind the phhA, hpd, and dhcA promoters in vitro by use of electrophoretic mobility shift assays. Our work characterizes a transcriptional regulator of catabolic genes induced during P. aeruginosa growth in CF sputum.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。