Sustained Release of Tacrolimus From a Topical Drug Delivery System Promotes Corneal Reinnervation

通过局部给药系统缓释他克莫司促进角膜神经支配

阅读:6
作者:Simeon C Daeschler, Kaveh Mirmoeini, Tessa Gordon, Katelyn Chan, Jennifer Zhang, Asim Ali, Konstantin Feinberg, Gregory H Borschel

Conclusions

Locally delivered tacrolimus promotes axonal regeneration in vitro and corneal reinnervation in vivo with minimal systemic drug exposure. Translational relevance: Topically applied tacrolimus may provide a readily translatable approach to promote corneal reinnervation.

Methods

A compartmentalized neuronal cell culture was used to determine the effect of locally delivered tacrolimus on sensory axon regeneration in vitro. The regenerating axons but not the cell bodies were exposed to tacrolimus (50 ng/mL), nerve growth factor (50 ng/mL), or a vehicle control. Axon area and length were measured after 48 hours. Then, a biodegradable nanofiber drug delivery system was fabricated via electrospinning of a tacrolimus-loaded polycarbonate-urethane polymer. Biocompatibility, degradation, drug biodistribution, and therapeutic effectiveness were tested in a rat model of neurotrophic keratopathy induced by stereotactic trigeminal nerve ablation.

Purpose

Corneal nerve fibers provide sensation and maintain the epithelial renewal process. Insufficient corneal innervation can cause neurotrophic keratopathy. Here, topically delivered tacrolimus is evaluated for its therapeutic potential to promote corneal reinnervation in rats.

Results

Sensory neurons whose axons were exposed to tacrolimus regenerated significantly more and longer axons compared to vehicle-treated cultures. Trigeminal nerve ablation in rats reliably induced corneal denervation. Four weeks after denervation, rats that had received tacrolimus topically showed similar limbal innervation but a significantly higher nerve fiber density in the center of the cornea compared to the non-treated control. Topically applied tacrolimus was detectable in the ipsilateral vitreal body, the plasma, and the ipsilateral trigeminal ganglion but not in their contralateral counterparts and vital organs after 4 weeks of topical release. Conclusions: Locally delivered tacrolimus promotes axonal regeneration in vitro and corneal reinnervation in vivo with minimal systemic drug exposure. Translational relevance: Topically applied tacrolimus may provide a readily translatable approach to promote corneal reinnervation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。