S100A4 alters metabolism and promotes invasion of lung cancer cells by up-regulating mitochondrial complex I protein NDUFS2

S100A4 通过上调线粒体复合物 I 蛋白 NDUFS2 改变代谢并促进肺癌细胞侵袭

阅读:6
作者:Lili Liu, Lei Qi, Teresa Knifley, Dava W Piecoro, Piotr Rychahou, Jinpeng Liu, Mihail I Mitov, Jeremiah Martin, Chi Wang, Jianrong Wu, Heidi L Weiss, D Allan Butterfield, B Mark Evers, Kathleen L O'Connor, Min Chen

Abstract

It is generally accepted that alterations in metabolism are critical for the metastatic process; however, the mechanisms by which these metabolic changes are controlled by the major drivers of the metastatic process remain elusive. Here, we found that S100 calcium-binding protein A4 (S100A4), a major metastasis-promoting protein, confers metabolic plasticity to drive tumor invasion and metastasis of non-small cell lung cancer cells. Investigating how S100A4 regulates metabolism, we found that S100A4 depletion decreases oxygen consumption rates, mitochondrial activity, and ATP production and also shifts cell metabolism to higher glycolytic activity. We further identified that the 49-kDa mitochondrial complex I subunit NADH dehydrogenase (ubiquinone) Fe-S protein 2 (NDUFS2) is regulated in an S100A4-dependent manner and that S100A4 and NDUFS2 exhibit co-occurrence at significant levels in various cancer types as determined by database-driven analysis of genomes in clinical samples using cBioPortal for Cancer Genomics. Importantly, we noted that S100A4 or NDUFS2 silencing inhibits mitochondrial complex I activity, reduces cellular ATP level, decreases invasive capacity in three-dimensional growth, and dramatically decreases metastasis rates as well as tumor growth in vivo Finally, we provide evidence that cells depleted in S100A4 or NDUFS2 shift their metabolism toward glycolysis by up-regulating hexokinase expression and that suppressing S100A4 signaling sensitizes lung cancer cells to glycolysis inhibition. Our findings uncover a novel S100A4 function and highlight its importance in controlling NDUFS2 expression to regulate the plasticity of mitochondrial metabolism and thereby promote the invasive and metastatic capacity in lung cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。