Interleukin-10 increases macrophage-mediated chemotherapy resistance via FABP5 signaling in multiple myeloma

白细胞介素-10 通过多发性骨髓瘤中的 FABP5 信号增强巨噬细胞介导的化疗耐药性

阅读:6
作者:Mingyue Zhang, Jintong Chen, Hua Zhang, He Dong, Ying Yue, Siqing Wang

Abstract

Macrophages (MΦs) protect multiple myeloma (MM) cells from chemotherapy-induced apoptosis, and interleukin-10 (IL-10) is frequently elevated in the MM microenvironment. However, the role of IL-10 in MΦ-induced tumor chemotherapy resistance has not yet been clarified. In the present study, bone marrow-derived MΦs were treated with IL-10 (IL10-MΦs), and IL10-MΦ-induced MM chemotherapy resistance was evaluated. IL-10 promoted MΦ-mediated resistance to MM chemotherapy. In addition, IL-10 treatment increased lipid accumulation and fatty acid β-oxidation in MΦs. Mechanistically, IL-10 increased fatty acid binding protein 5 (FABP5) expression in MΦs, and targeting FABP5 decreased MM chemotherapy resistance induced by IL10-MΦs in vitro and enhanced chemotherapeutic efficacy in vivo. Inhibition of FABP5 decreased the expression of Carnitine Palmitoyltransferase 1A (CPT1A) in IL10-MΦs. In addition, inhibition of CPT1A in IL10-MΦs decreased IL10-MΦ-mediated MM chemotherapy resistance. Peroxisome proliferator-activated receptor γ (PPARγ) is upstream of FABP5 signaling. Inhibition of PPARγ in IL10-MΦs decreased IL10-MΦ-mediated MM chemotherapy resistance in vitro. Collectively, our work indicates that IL-10 enhances MΦ-mediated MM chemotherapy resistance via FABP5 signaling and targeting FABP5 has potentially important clinical implications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。