Genetically Encoded Boronolectin as a Specific Red Fluorescent UDP-GlcNAc Biosensor

基因编码的硼凝集素作为特异性红色荧光 UDP-GlcNAc 生物传感器

阅读:7
作者:Jing Zhang, Zefan Li, Yu Pang, Yichong Fan, Hui-Wang Ai

Abstract

There is great interest in developing boronolectins that are synthetic lectin mimics containing a boronic acid functional group for reversible recognition of diol-containing molecules, such as glycans and ribonucleotides. However, it remains a significant challenge to gain specificity. Here, we present a genetically encoded boronolectin which is a hybrid protein consisting of a noncanonical amino acid (ncAA) p-boronophenylalanine (pBoF), natural-lectin-derived peptide sequences, and a circularly permuted red fluorescent protein (cpRFP). The genetic encodability permitted a straightforward protein engineering process to derive a red fluorescent biosensor that can specifically bind uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), an important nucleotide sugar involved in metabolic sensing and cell signaling. We further characterized the resultant boronic acid- and peptide-assisted UDP-GlcNAc sensor (bapaUGAc) both in vitro and in live mammalian cells. Because UDP-GlcNAc in the endoplasmic reticulum (ER) and Golgi apparatus plays essential roles in glycosylating biomolecules in the secretory pathway, we genetically expressed bapaUGAc in the ER and Golgi and validated the sensor for its responses to metabolic disruption and pharmacological inhibition. In addition, we combined bapaUGAc with UGAcS, a recently reported green fluorescent UDP-GlcNAc sensor based on an alternative sensing mechanism, to monitor UDP-GlcNAc level changes in the ER and cytosol simultaneously. We expect our work to facilitate the future development of specific boronolectins for carbohydrates. In addition, this newly developed genetically encoded bapaUGAc sensor will be a valuable tool for studying UDP-GlcNAc and glycobiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。