Interferon-expressing oncolytic adenovirus + chemoradiation inhibited pancreatic cancer growth in a hamster model

干扰素表达溶瘤腺病毒 + 放化疗抑制仓鼠模型中的胰腺癌生长

阅读:6
作者:Shuhei Shinoda, Nikita S Sharma, Naohiko Nakamura, Kazuho Inoko, Mizuho Sato-Dahlman, Paari Murugan, Julia Davydova, Masato Yamamoto

Abstract

Past clinical trials of adjuvant therapy combined with interferon (IFN) alpha, fluorouracil, cisplatin, and radiation improved the 5-year survival rate of pancreatic ductal adenocarcinoma (PDAC). However, these trials also revealed the disadvantages of the systemic toxicity of IFN and insufficient delivery of IFN. To improve efficacy and tolerability, we have developed an oncolytic adenovirus-expressing IFN (IFN-OAd). Here, we evaluated IFN-OAd in combination with chemotherapy (gemcitabine + nab-paclitaxel) + radiation. Combination index (CI) analysis showed that IFN-OAd + chemotherapy + radiation was synergistic (CI <1). Notably, IFN-OAd + chemotherapy + radiation remarkably suppressed tumor growth and induced a higher number of tumor-infiltrating lymphocytes without severe side toxic effects in an immunocompetent and adenovirus replication-permissive hamster PDAC model. This is the first study to report that gemcitabine + nab-paclitaxel, the current first-line chemotherapy for PDAC, did not hamper virus replication in a replication-permissive immunocompetent model. IFN-OAd has the potential to overcome the barriers to clinical application of IFN-based therapy through its tumor-specific expression of IFN, induction of antitumor immunity, and sensitization with chemoradiation. Combining IFN-OAd with gemcitabine + nab-paclitaxel + radiation might be an effective and clinically beneficial treatment for PDAC patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。