Proteomic and in silico analyses of dextran synthesis influence on Leuconostoc lactis AV1n adaptation to temperature change

蛋白质组学和计算机模拟分析葡聚糖合成对乳明串珠菌 AV1n 适应温度变化的影响

阅读:5
作者:Norhane Besrour-Aouam, Vivian de Los Rios, Annel M Hernández-Alcántara, Mᵃ Luz Mohedano, Afef Najjari, Paloma López, Hadda-Imene Ouzari

Abstract

Leuconostoc lactis is found in vegetables, fruits, and meat and is used by the food industry in the preparation of dairy products, wines, and sugars. We have previously demonstrated that the dextransucrase of Lc. lactis (DsrLL) AV1n produces a high-molecular-weight dextran from sucrose, indicating its potential use as a dextran-forming starter culture. We have also shown that this bacterium was able to produce 10-fold higher levels of dextran at 20°C than at 37°C, at the former temperature accompanied by an increase in dsrLL gene expression. However, the general physiological response of Lc. lactis AV1n to cold temperature in the presence of sucrose, leading to increased production of dextran, has not been yet investigated. Therefore, we have used a quantitative proteomics approach to investigate the cold temperature-induced changes in the proteomic profile of this strain in comparison to its proteomic response at 37°C. In total, 337 proteins were found to be differentially expressed at the applied significance criteria (adjusted p-value ≤ 0.05, FDR 5%, and with a fold-change ≥ 1.5 or ≤ 0.67) with 204 proteins overexpressed, among which 13% were involved in protein as well as cell wall, and envelope component biosynthesis including DsrLL. Proteins implicated in cold stress were expressed at a high level at 20°C and possibly play a role in the upregulation of DsrLL, allowing the efficient synthesis of the protein essential for its adaptation to cold. Post-transcriptional regulation of DsrLL expression also seems to take place through the interplay of exonucleases and endonucleases overexpressed at 20°C, which would influence the half-life of the dsrLL transcript. Furthermore, the mechanism of cold resistance of Lc. lactis AV1n seems to be also based on energy saving through a decrease in growth rate mediated by a decrease in carbohydrate metabolism and its orientation toward the production pathways for storage molecules. Thus, this better understanding of the responses to low temperature and mechanisms for environmental adaptation of Lc. lactis could be exploited for industrial use of strains belonging to this species.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。