ANO7 expression in the prostate modulates mitochondrial function and lipid metabolism

前列腺中的 ANO7 表达调节线粒体功能和脂质代谢

阅读:9
作者:Christoffer Löf #, Nasrin Sultana #, Neha Goel, Samuel Heron, Gudrun Wahlström, Andrew House, Minna Holopainen, Reijo Käkelä, Johanna Schleutker

Background

Prostate cancer (PrCa) is a significant health concern, ranking as the second most common cancer in males globally. Genetic factors contribute substantially to PrCa risk, with up to 57% of the risk being attributed to genetic determinants. A major challenge in managing PrCa is the early identification of aggressive cases for targeted treatment, while avoiding unnecessary interventions in slow-progressing cases. Therefore, there is a critical need for genetic biomarkers that can distinguish between aggressive and non-aggressive PrCa cases. Previous research, including our own, has shown that germline variants in ANO7 are associated with aggressive PrCa. However, the function of ANO7 in the prostate remains unknown.

Conclusions

This study provides new insights into the function of ANO7 in prostate cells, highlighting its involvement in metabolic pathways, particularly OXPHOS and lipid metabolism. The findings suggest that ANO7 may act as a key regulator of cellular lipid metabolism and mitochondrial function in the prostate, shedding light on a previously unknown aspect of ANO7's biology.

Methods

We performed RNA-sequencing (RNA-seq) on RWPE1 cells engineered to express ANO7 protein, alongside the analysis of a single-cell RNA-sequencing (scRNA-seq) dataset and RNA-seq from prostate tissues. Differential gene expression analysis and gene set enrichment analysis (GSEA) were conducted to identify key pathways. Additionally, we assessed oxidative phosphorylation (OXPHOS), glycolysis, and targeted metabolomics. Image analysis of mitochondrial morphology and lipidomics were also performed to provide further insight into the functional role of ANO7 in prostate cells.

Results

ANO7 expression resulted in the downregulation of metabolic pathways, particularly genes associated with the MYC pathway and oxidative phosphorylation (OXPHOS) in both prostate tissue and ANO7-expressing cells. Measurements of OXPHOS and glycolysis in the ANO7-expressing cells revealed a metabolic shift towards glycolysis. Targeted metabolomics showed reduced levels of the amino acid aspartate, indicating disrupted mitochondrial function in the ANO7-expressing cells. Image analysis demonstrated altered mitochondrial morphology in these cells. Additionally, ANO7 downregulated genes involved in fatty acid metabolism and induced changes in lipid composition of the cells, characterized by longer acyl chain lengths and increased unsaturation, suggesting a role for ANO7 in regulating lipid metabolism in the prostate. Conclusions: This study provides new insights into the function of ANO7 in prostate cells, highlighting its involvement in metabolic pathways, particularly OXPHOS and lipid metabolism. The findings suggest that ANO7 may act as a key regulator of cellular lipid metabolism and mitochondrial function in the prostate, shedding light on a previously unknown aspect of ANO7's biology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。