Effect of carrot intake on glucose tolerance, microbiota, and gene expression in a type 2 diabetes mouse model

胡萝卜摄入对 2 型糖尿病小鼠模型的葡萄糖耐受性、微生物群和基因表达的影响

阅读:9
作者:Morten Kobaek-Larsen, Sina Maschek, Stefanie Hansborg Kolstrup, Kurt Højlund, Dennis Sandris Nielsen, Axel Kornerup Hansen, Lars Porskjær Christensen

Abstract

Type 2 diabetes (T2D) pathophysiology involves insulin resistance (IR) and inadequate insulin secretion. Current T2D management includes dietary adjustments and/or oral medications such as thiazolidinediones (TZDs). Carrots have shown to contain bioactive acetylenic oxylipins that are partial agonists of the peroxisome proliferator-activated receptor γ (Pparg) that mimic the antidiabetic effect of TZDs without any adverse effects. TZDs exert hypoglycemic effects through activation of Pparg and through the regulation of the gut microbiota (GM) producing short-chain fatty acids (SCFAs), which impact glucose and energy homeostasis, promote intestinal gluconeogenesis, and influence insulin signaling pathways. This study investigated the metabolic effects of carrot intake in a T2D mouse model, elucidating underlying mechanisms. Mice were fed a low-fat diet (LFD), high-fat diet (HFD), or adjusted HFD supplemented with 10% carrot powder for 16 weeks. Oral glucose tolerance tests were conducted at weeks 0 and 16. Fecal, cecum, and colon samples, as well as tissue samples, were collected at week 16 during the autopsy. Results showed improved oral glucose tolerance in the HFD carrot group compared to HFD alone after 16 weeks. GM analysis demonstrated increased diversity and compositional changes in the cecum of mice fed HFD with carrot relative to HFD. These findings suggest the potential effect of carrots in T2D management, possibly through modulation of GM. Gene expression analysis revealed no significant alterations in adipose or muscle tissue between diet groups. Further research into carrot-derived bioactive compounds and their mechanisms of action is warranted for developing effective dietary strategies against T2D.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。