Butyrate Protects Pancreatic Beta Cells from Cytokine-Induced Dysfunction

丁酸保护胰腺β细胞免受细胞因子诱导的功能障碍

阅读:7
作者:Michala Prause, Signe Schultz Pedersen, Violeta Tsonkova, Min Qiao, Nils Billestrup

Abstract

Pancreatic beta cell dysfunction caused by metabolic and inflammatory stress contributes to the development of type 2 diabetes (T2D). Butyrate, produced by the gut microbiota, has shown beneficial effects on glucose metabolism in animals and humans and may directly affect beta cell function, but the mechanisms are poorly described. The aim of this study was to investigate the effect of butyrate on cytokine-induced beta cell dysfunction in vitro. Mouse islets, rat INS-1E, and human EndoC-βH1 beta cells were exposed long-term to non-cytotoxic concentrations of cytokines and/or butyrate to resemble the slow onset of inflammation in T2D. Beta cell function was assessed by glucose-stimulated insulin secretion (GSIS), gene expression by qPCR and RNA-sequencing, and proliferation by incorporation of EdU into newly synthesized DNA. Butyrate protected beta cells from cytokine-induced impairment of GSIS and insulin content in the three beta cell models. Beta cell proliferation was reduced by both cytokines and butyrate. Expressions of the beta cell specific genes Ins, MafA, and Ucn3 reduced by the cytokine IL-1β were not affected by butyrate. In contrast, butyrate upregulated the expression of secretion/transport-related genes and downregulated inflammatory genes induced by IL-1β in mouse islets. In summary, butyrate prevents pro-inflammatory cytokine-induced beta cell dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。