Fibroblasts from Patients with Melorheostosis Promote Angiogenesis in Healthy Endothelial Cells through Secreted Factors

骨硬化症患者的成纤维细胞通过分泌因子促进健康内皮细胞的血管生成

阅读:8
作者:Amelia C Hurley-Novatny, Jules D Allbritton-King, Smita Jha, Edward W Cowen, Robert A Colbert, Fatemeh Navid, Timothy Bhattacharyya

Abstract

Melorheostosis is a rare sclerosing bone disease with associated vascular abnormalities in skin and bone, which is caused by somatic mosaic single nucleotide variations in the MAP2K1 gene, which encodes MAPK/extracellular signal‒regulated kinase (ERK) kinase 1. However, disease pathogenesis is poorly understood. Using patient-derived cells, we found that affected skin fibroblasts carrying the single nucleotide variations have increased activation of ERK1/2, which results in increased expression and secretion of proangiogenic factors, including VEGF. VEGF secretion was strongly reduced in affected cells after treatment with MAPK/ERK kinase 1 inhibitor trametinib. Treatment of healthy endothelial cells on matrigel with conditioned medium from affected fibroblasts induces the adoption of a proangiogenic phenotype. Direct coculture of fibroblasts and endothelial cells further shows that both secreted factors and extracellular matrix are capable of inducing a proangiogenic phenotype in healthy endothelial cells. Blocking VEGF with bevacizumab reduces the proangiogenic effect of affected fibroblasts in both the matrigel and direct coculture angiogenesis models, indicating that elevated VEGF secretion is a key mediator of increased angiogenesis in melorheostosis tissue. In conclusion, this work identifies the role of several important molecular mediators in the pathogenesis of melorheostosis, including MAPK/ERK kinase 1, phosphorylated ERK1/2, and VEGF, all of which have clinically available pharmacologic inhibitors, which could be further explored as therapeutic targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。