Sigma-1 receptor alters the kinetics of Kv1.3 voltage gated potassium channels but not the sensitivity to receptor ligands

Sigma-1 受体改变 Kv1.3 电压门控钾通道的动力学,但不改变对受体配体的敏感性

阅读:6
作者:Maho Kinoshita, Yoshikazu Matsuoka, Takeshi Suzuki, Jennifer Mirrielees, Jay Yang

Abstract

Sigma1 receptors (Sigma1R) are intracellular chaperone proteins that bind psychotropic drugs and also clinically used drugs such as ketamine and haloperidol. Co-expression of the Sigma1R has been reported to enhance the sensitivity of several voltage-gated ion channels to Sigma1R ligands. Kv1.3 is the predominant voltage-gated potassium channel expressed in T lymphocytes with a documented role in immune activation. To gain a better understanding of Sigma1R modulation of Kv ion channels, we investigated the effects of Sigma1R co-expression on Kv1.3 physiology and pharmacology in ion channels expressed in Xenopus oocytes. We also explored the protein domains of Kv1.3 necessary for protein:protein interaction between Kv1.3 and Sigma1R through co-immunoprecipitation studies. Slowly inactivating outward-going currents consistent with Kv1.3 expression were elicited on step depolarizations. The current characterized by E(rev), V(1/2), and slope factor remained unchanged when co-expressed with Sigma1R. Analysis of inactivation time constant revealed a faster Kv1.3 current decay when co-expressed with Sigma1R. However the sensitivity to Sigma1R ligands remained unaltered when co-expressed with the Sigma1R in contrast to the previously reported modulation of ligand sensitivity in closely related Kv1.4 and Kv1.5 voltage gated potassium channels. Co-immunoprecipitation assays of various Kv1.3 truncation constructs indicated that the transmembrane domain of the Kv1.3 protein was responsible for the protein:protein interaction with the Sigma1R. Sigma1R likely interacts with different domains of Kv ion channel family proteins resulting in distinct modulation of different channels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。