PPAR-gamma coactivator-1alpha regulates progesterone production in ovarian granulosa cells with SF-1 and LRH-1

PPAR-γ 辅激活因子-1α 通过 SF-1 和 LRH-1 调节卵巢颗粒细胞中的孕酮生成

阅读:5
作者:Takashi Yazawa, Yoshihiko Inaoka, Reiko Okada, Tetsuya Mizutani, Yukiko Yamazaki, Yoko Usami, Mayu Kuribayashi, Makoto Orisaka, Akihiro Umezawa, Kaoru Miyamoto

Abstract

Previously, we demonstrated that bone marrow-derived mesenchymal stem cells (MSCs) differentiate into steroidogenic cells such as Leydig and adrenocortical cells by the introduction of steroidogenic factor-1 (SF-1) and treatment with cAMP. In this study, we employed the same approach to differentiate umbilical cord blood (UCB)-derived MSCs. Despite UCB-MSCs differentiating into steroidogenic cells, they exhibited characteristics of granulosa-luteal-like cells. We found that peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) was expressed and further induced by cAMP stimulation in UCB-MSCs. Consistent with these results, tissue-specific expression of Pgc-1alpha was observed in rat ovarian granulosa cells. PGC-1alpha binds to the NR5A family [SF-1 and liver receptor homolog-1 (LRH-1)] of proteins and markedly enhances their transcriptional activities. Reporter assays revealed that PGC-1alpha activated the promoter activities of SF-1 and LRH-1 target genes. Infection of KGN cells (a human cell line derived from granulosa cells) with adenoviruses expressing PGC-1alpha resulted in the induction of steroidogenesis-related genes and stimulation of progesterone production. PGC-1alpha also induced SF-1 and LRH-1, with the latter induced to a greater extent. Knockdown of Pgc-1alpha in cultured rat granulosa cells resulted in attenuation of gene expression as well as progesterone production. Transactivation of the NR5A family by PGC-1alpha was repressed by Dax-1. PGC-1alpha binds to the activation function 2 domain of NR5A proteins via its consensus LXXLL motif. These results indicate that PGC-1alpha is involved in progesterone production in ovarian granulosa cells by potentiating transcriptional activities of the NR5A family proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。