Effects of platelet-rich fibrin on osteogenic differentiation of Schneiderian membrane derived mesenchymal stem cells and bone formation in maxillary sinus

富血小板纤维蛋白对Schneiderian膜来源的间充质干细胞成骨分化及上颌窦骨形成的影响

阅读:5
作者:Jia Wang, Yue Sun, Yiping Liu, Jize Yu, Xiaolin Sun, Lin Wang, Yanmin Zhou

Background

The existence of mesenchymal stem cells (MSCs) in Schneiderian membrane has not been determined. The

Conclusions

MSCs existed in Schneiderian membrane, and PRF stimulation could promote cell proliferation, migration and osteogenic differentiation. The application of PRF in maxillary sinus floor elevation could accelerate bone healing and increase the quantity and quality of new bone. PRF, as autologous graft materials, might offer a promising strategy for the clinical bone formation during MSFE procedure. Video Abstract.

Methods

Schneiderian membrane derived mesenchymal stem cells (SM-MSCs) were isolated from rabbit maxillary sinus. Cells were identified by flow cytometry and multipotential differentiation. Real-time cell analysis assay, fluorescence staining, transwell assay, and wound healing assay were used to determine the effects of PRF stimulation on cell proliferation and migration. The osteogenic differentiation ability of cells stimulated by PRF or osteoinductive medium was evaluated by alkaline phosphatase staining, alizarin red staining, PCR and Western blot. Equivalent volume Bio-oss and the mixture of Bio-oss and PRF were used as bone graft materials for maxillary sinus floor elevation. Micro-CT, bone double-staining, HE staining, Masson staining, and toluidine blue staining were used to evaluate the osteogenic effect in 8 and 12 weeks after surgery.

Results

The cell surface markers were positive for expression of CD90, CD105, and negative for expression of CD34, CD45. SM-MSCs had the ability of osteogenic, adipogenic and chondrogenic differentiation. PRF could stimulate proliferation, migration and osteogenic differentiation of SM-MSCs, which was achieved by up-regulating ERK 1/2 signaling pathway. PRF could accelerate the formation of new bone in maxillary sinus and increase the amount of new bone formation. Conclusions: MSCs existed in Schneiderian membrane, and PRF stimulation could promote cell proliferation, migration and osteogenic differentiation. The application of PRF in maxillary sinus floor elevation could accelerate bone healing and increase the quantity and quality of new bone. PRF, as autologous graft materials, might offer a promising strategy for the clinical bone formation during MSFE procedure. Video Abstract.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。