Degenerate suppression PCR identifies the beta2-adrenergic receptor as upregulated by neuronal differentiation

退化抑制 PCR 鉴定出 β2-肾上腺素受体因神经元分化而上调

阅读:4
作者:Jan Lewerenz, Frank Leypoldt, Axel Methner

Abstract

Communication between cells is necessary for the functioning of a multicellular organism. Cells process a large amount of information through G-protein-coupled receptors, and activation of this receptor class has been implicated in neuronal differentiation. In this study, we used a method based on PCR with degenerated primers to identify G-protein-coupled receptors regulated by retinoic acid-induced differentiation of the human teratocarcinoma cell line NTera-2/D1. Subtracted cDNA libraries and control cDNA served as templates in half-sided PCR with a forward degenerate primer based on a conserved sequence from human serotonergic, adrenergic, and dopaminergic receptors and reverse primers on adaptors with long terminal repeats commonly employed in subtractive suppression hybridization. We developed conditions to amplify G-protein-coupled receptors from adaptor-ligated cDNA and found the beta2-adrenergic receptor to be upregulated fourfold. This seems to be physiologically relevant, as it could also be shown in rat primary cortical cultures maturing in vitro. The method presented here makes use of the otherwise unused control cDNA from subtractive suppression hybridization experiments and could be easily adapted to other gene families.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。