New Carvone-Based Deep Eutectic Solvents for Siloxanes Capture from Biogas

用于从沼气中捕获硅氧烷的新型香芹酮基深共熔溶剂

阅读:5
作者:Patrycja Makoś-Chełstowska, Edyta Słupek, Aleksandra Kramarz, Jacek Gębicki

Abstract

During biogas combustion, siloxanes form deposits of SiO2 on engine components, thus shortening the lifespan of the installation. Therefore, the development of new methods for the purification of biogas is receiving increasing attention. One of the most effective methods is physical absorption with the use of appropriate solvents. According to the principles of green engineering, solvents should be biodegradable, non-toxic, and have a high absorption capacity. Deep eutectic solvents (DES) possess such characteristics. In the literature, due to the very large number of DES combinations, conductor-like screening models for real solvents (COSMO-RS), based on the comparison of siloxane activity coefficient of 90 DESs of various types, were studied. DESs, which have the highest affinity to siloxanes, were synthesized. The most important physicochemical properties of DESs were carefully studied. In order to explain of the mechanism of DES formation, and the interaction between DES and siloxanes, the theoretical studies based on σ-profiles, and experimental studies including the 1H NMR, 13C NMR, and FT-IR spectra, were applied. The obtained results indicated that the new DESs, which were composed of carvone and carboxylic acids, were characterized by the highest affinity to siloxanes. It was shown that the hydrogen bonds between the active ketone group (=O) and the carboxyl group (-COOH) determined the formation of stable DESs with a melting point much lower than those of the individual components. On the other hand, non-bonded interactions mainly determined the effective capture of siloxanes with DES.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。