A hexapeptide of the receptor-binding domain of SARS corona virus spike protein blocks viral entry into host cells via the human receptor ACE2

SARS 冠状病毒刺突蛋白受体结合域的六肽可阻止病毒通过人类受体 ACE2 进入宿主细胞

阅读:5
作者:Anna-Winona Struck, Marco Axmann, Susanne Pfefferle, Christian Drosten, Bernd Meyer

Abstract

In vitro infection of Vero E6 cells by SARS coronavirus (SARS-CoV) is blocked by hexapeptide Tyr-Lys-Tyr-Arg-Tyr-Leu. The peptide also inhibits proliferation of coronavirus NL63. On human cells both viruses utilize angiotensin-converting enzyme 2 (ACE2) as entry receptor. Blocking the viral entry is specific as alpha virus Sindbis shows no reduction in infectivity. Peptide (438)YKYRYL(443) is part of the receptor-binding domain (RBD) of the spike protein of SARS-CoV. Peptide libraries were screened by surface plasmon resonance (SPR) to identify RBD binding epitopes. (438)YKYRYL(443) carries the dominant binding epitope and binds to ACE2 with K(D)=46 μM. The binding mode was further characterized by saturation transfer difference (STD) NMR spectroscopy and molecular dynamic simulations. Based on this information the peptide can be used as lead structure to design potential entry inhibitors against SARS-CoV and related viruses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。