Identification of multiple regulatory genes involved in TGase production in Streptomyces mobaraensis DSM 40587

鉴定参与茂原链霉菌 DSM 40587 中 TGase 产生的多个调控基因

阅读:5
作者:Xian Liu, Dan Wang, Yuru Zhang, Xiaoxin Zhuang, Linquan Bai

Abstract

Microbial transglutaminase (TGase) is a protein that is secreted in a mature form and finds wide applications in meat products, tissue scaffold crosslinking, and textile engineering. Streptomyces mobaraensis is the only licensed producer of TGase. However, increasing the production of TGase using metabolic engineering and heterologous expression approaches has encountered challenges in meeting industrial demands. Therefore, it is necessary to identify the regulatory networks involved in TGase biosynthesis to establish a stable and highly efficient TGase cell factory. In this study, we employed a DNA-affinity capture assay and mass spectrometry analysis to discover several transcription factors. Among the candidates, eight were selected and found to impact TGase biosynthesis. Notably, SMDS_4150, an AdpA-family regulator, exhibited a significant influence and was hence named AdpA Sm . Through electrophoretic mobility shift assays, we determined that AdpA Sm regulates TGase biosynthesis by directly repressing the transcription of tg and indirectly inhibiting the transcription of SMDS_3961. The latter gene encodes a LytR-family positive regulator of TGase biosynthesis. Additionally, AdpA Sm exhibited negative regulation of its own transcription. To further enhance TGase production, we combined the overexpression of SMDS_3961 with the repression of SMDS_4150, resulting in a remarkable improvement in TGase titer from 28.67 to 52.0 U/mL, representing an 81.37% increase. This study establishes AdpA as a versatile regulator involved in coordinating enzyme biosynthesis in Streptomyces species. Furthermore, we elucidated a cascaded regulatory network governing TGase production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。