Biochemical Characterization of a New β-Agarase from Cellulophaga Algicola

Cellulophaga Algicola 新型 β-琼脂酶的生化特性

阅读:5
作者:Zhenggang Han, Yuxi Zhang, Jiangke Yang

Abstract

Cellulophaga algicola DSM 14237, isolated from the Eastern Antarctic coastal zone, was found to be able to hydrolyze several types of polysaccharide materials. In this study, a predicted β-agarase (CaAga1) from C. algicola was heterologously expressed in Escherichia coli. The purified recombinant CaAga1 showed specific activities of 29.39, 20.20, 14.12, and 8.99 U/mg toward agarose, pure agar, and crude agars from Gracilaria lemaneiformis and Porphyra haitanensis, respectively. CaAga1 exhibited an optimal temperature and pH of 40 oC and 7, respectively. CaAga1 was stable over a wide pH range from 4 to 11. The recombinant enzyme showed an unusual thermostability, that is, it was stable at temperature below or equal to 40oC and around 70 oC, but was thermolabile at about 50 oC. With the agarose as the substrate, the Km and Vmax values for CaAga1 were 1.19 mg/mL and 36.21 U/mg, respectively. The reducing reagent (dithiothreitol) enhanced the activity of CaAga1 by more than one fold. In addition, CaAga1 was salt-tolerant given that it retained approximately 70% of the maximum activity in the presence of 2 M NaCl. The thin layer chromatography results indicated that CaAga1 is an endo-type β-agarase and efficiently hydrolyzed agarose into neoagarotetraose (NA4) and neoagarohexaose (NA6). A structural model of CaAga1 in complex with neoagarooctaose (NA8) was built by homology modeling and explained the hydrolysis pattern of CaAga1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。