Isocitrate lyase supplies precursors for hydrogen cyanide production in a cystic fibrosis isolate of Pseudomonas aeruginosa

异柠檬酸裂解酶为铜绿假单胞菌囊性纤维化分离株中的氢氰酸生成提供前体

阅读:6
作者:Jessica M Hagins, Robert Locy, Laura Silo-Suh

Abstract

Pseudomonas aeruginosa colonizes and can persist in the lungs of cystic fibrosis (CF) patients for decades. Adaptation of P. aeruginosa to the CF lung environment causes various genotypic and phenotypic alterations in the bacterium that facilitate persistence. We showed previously that isocitrate lyase (ICL) activity is constitutively upregulated in the P. aeruginosa CF isolate FRD1. We show here that high ICL activity in FRD1 contributes to increased hydrogen cyanide (HCN) production by this isolate. Disruption of aceA, which encodes ICL, results in reduced cyanide production by FRD1 but does not affect cyanide production in the wound isolate PAO1. Cyanide production is restored to the FRD1aceA mutant by addition of glyoxylate, a product of ICL activity, or glycine to the growth medium. Conversion of glyoxylate to glycine may provide a mechanism for increased cyanide production by P. aeruginosa growing on compounds that activate the glyoxylate pathway. Consistent with this hypothesis, disruption of PA5304, encoding a putative d-amino acid dehydrogenase (DadA), led to decreased cyanide production by FRD1. Cyanide production was restored to the FRD1dadA mutant by the addition of glycine, but not glyoxylate, to the growth medium, suggesting that loss of the ability to convert glyoxylate to glycine was associated with the dadA mutation. This was supported by increased glycine production from toluene-treated FRD1 cells with the addition of glyoxylate compared to FRD1dadA cells. This study indicates a larger role for ICL in the physiology and virulence of chronic isolates of P. aeruginosa than previously recognized.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。