Alterations in the expression, structure and function of progesterone receptor membrane component-1 (PGRMC1) in premature ovarian failure

卵巢早衰中孕酮受体膜成分-1(PGRMC1)的表达、结构和功能的改变

阅读:3
作者:Mahmoud Reza Mansouri, Jens Schuster, Jitendra Badhai, Eva-Lena Stattin, Ralf Lösel, Martin Wehling, Birgit Carlsson, Outi Hovatta, Per Olof Karlström, Irina Golovleva, Daniela Toniolo, Silvia Bione, John Peluso, Niklas Dahl

Abstract

Premature ovarian failure (POF) is characterized by hypergonadotropic hypogonadism and amenorrhea before the age of 40. The condition has a heterogeneous background but genetic factors are demonstrated by the occurrence of familial cases. We identified a mother and daughter with POF both of whom carry an X;autosome translocation [t(X;11)(q24;q13)]. RNA expression studies of genes flanking the X-chromosome breakpoint revealed that both patients have reduced expression levels of the gene Progesterone Receptor Membrane Component-1 (PGRMC1). Mutation screening of 67 females with idiopathic POF identified a third patient with a missense mutation (H165R) located in the cytochrome b5 domain of PGRMC1. PGRMC1 mediates the anti-apoptotic action of progesterone in ovarian cells and it acts as a positive regulator of several cytochrome P450 (CYP)-catalyzed reactions. The CYPs are critical for intracellular sterol metabolism, including biosynthesis of steroid hormones. We show that the H165R mutation associated with POF abolishes the binding of cytochrome P450 7A1 (CYP7A1) to PGRMC1. In addition, the missense mutation attenuates PGRMC1's ability to mediate the anti-apoptotic action of progesterone in ovarian cells. These findings suggest that mutant or reduced levels of PGMRC1 may cause POF through impaired activation of the microsomal cytochrome P450 and increased apoptosis of ovarian cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。