Interventions by Cardiovascular Drugs Against Aircraft Noise-Induced Cardiovascular Oxidative Stress and Damage

心血管药物干预飞机噪音引起的心血管氧化应激和损伤

阅读:4
作者:Marin Kuntić, Ivana Kuntić, Jiayin Zheng, Leonardo Nardi, Matthias Oelze, Arijan Valar, Dominika Mihaliková, Lea Strohm, Henning Ubbens, Qi Tang, Liyu Zhang, Guilherme Horta, Paul Stamm, Omar Hahad, Dilja Krueger-Burg, Huige Li, Sebastian Steven, Adrian Gericke, Michael J Schmeisser, Thomas Münzel, 

Abstract

Noise pollution is a known health risk factor and evidence for cardiovascular diseases associated with traffic noise is growing. At least 20% of the European Union's population lives in noise-polluted areas with exposure levels exceeding the recommended limits of the World Health Organization, which is considered unhealthy by the European Environment Agency. This results in the annual loss of 1.6 million healthy life years. Here, we investigated the protective effects of cardiovascular drug interventions against aircraft noise-mediated cardiovascular complications such as elevated oxidative stress or endothelial dysfunction. Using our established mouse exposure model, we applied mean sound pressure levels of 72 dB(A) for 4 d. C57BL/6 mice were treated with the beta-blocker propranolol (15 mg/kg/d s.c. for 5 d) or the alpha-blocker phenoxybenzamine (1.5 mg/kg/d s.c. for 5 d) and noise-exposed for the last 4 d of the drug administration. Short-term noise exposure caused hypertension (measured by tail-cuff blood pressure monitoring) and impaired endothelial function (measured by isometric tension recording in the aorta and video microscopy in cerebral arterioles in response to acetylcholine). Noise also increased markers of oxidative stress and inflammation. Treatment of mice with propranolol and phenoxybenzamine prevented endothelial and microvascular dysfunction, which was supported by a decrease in markers of inflammation and oxidative stress in heart tissue and the brain. Amelioration of noise-induced hypertension (systolic blood pressure) was not observed, whereas pulse pressure was lowered by trend. This study provides a novel perspective mitigating the adverse effects of noise pollution, especially in vulnerable groups with medication, a rationale for further pharmacological human studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。