Cbln1 accumulates and colocalizes with Cbln3 and GluRdelta2 at parallel fiber-Purkinje cell synapses in the mouse cerebellum

Cbln1 在小鼠小脑平行纤维-浦肯野细胞突触处聚集并与 Cbln3 和 GluRdelta2 共定位

阅读:6
作者:Eriko Miura, Keiko Matsuda, James I Morgan, Michisuke Yuzaki, Masahiko Watanabe

Abstract

Cbln1 (a.k.a. precerebellin) is secreted from cerebellar granule cells as homohexamer or in heteromeric complexes with Cbln3. Cbln1 plays crucial roles in regulating morphological integrity of parallel fiber (PF)-Purkinje cell (PC) synapses and synaptic plasticity. Cbln1-knockout mice display severe cerebellar phenotypes that are essentially indistinguishable from those in glutamate receptor GluRdelta2-null mice, and include severe reduction in the number of PF-PC synapses and loss of long-term depression of synaptic transmission. To understand better the relationship between Cbln1, Cbln3 and GluRdelta2, we performed light and electron microscopic immunohistochemical analyses using highly specific antibodies and antigen-exposing methods, i.e. pepsin pretreatment for light microscopy and postembedding immunogold for electron microscopy. In conventional immunohistochemistry, Cbln1 was preferentially associated with non-terminal portions of PF axons in the molecular layer but rarely overlapped with Cbln3. In contrast, antigen-exposing methods not only greatly intensified Cbln1 immunoreactivity in the molecular layer, but also revealed its high accumulation in the synaptic cleft of PF-PC synapses. No such synaptic accumulation was evident at other PC synapses. Furthermore, Cbln1 now came to overlap almost completely with Cbln3 and GluRdelta2 at PF-PC synapses. Therefore, the convergence of all three molecules provides the anatomical basis for a common signaling pathway regulating circuit development and synaptic plasticity in the cerebellum.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。