STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin-6 production in response to lipopolysaccharide and live bacteria

STAT3 酪氨酸磷酸化对于脂多糖和活细菌产生的白细胞介素 1β 和白细胞介素 6 至关重要

阅读:3
作者:Lobelia Samavati, Ruchi Rastogi, Wenjin Du, Maik Hüttemann, Alemu Fite, Luigi Franchi

Abstract

Both interleukin 1 beta (IL-1beta) and interleukin-6 (IL-6) are pro-inflammatory cytokines that play a major role in inflammatory diseases as well as cancer. In this work we investigated the signaling pathway involving lipopolysaccharide (LPS)-mediated IL-1beta and IL-6 production in murine macrophage cell lines and primary macrophages. We show that in response to LPS, the JAK/STAT pathway is activated, leading to tyrosine phosphorylation at residue 705 on STAT3 and at residue 701 on STAT1, respectively. A newly developed STAT3 specific inhibitor (stattic) blocked LPS-mediated STAT3 tyrosine phosphorylation and led to inhibition of LPS-mediated IL-1beta and IL-6 production but not TNF-alpha production. Knockdown of STAT3 expression via small interfering RNA (siRNA) decreased the level of STAT3 expression in Raw 264.7 cells and decreased STAT3 tyrosine phosphorylation in response to LPS treatment. Quantitative real time PCR and Western analysis of cells treated with inhibitor or STAT3 siRNA after LPS treatment showed a significant reduction of IL-1beta and IL-6 mRNA and protein compared to cells treated with LPS alone. Moreover stattic abrogated IL-1beta formation in response to extracellular bacteria Staphylococcus aureus and Escherichia coli in murine peritoneal macrophages. This inhibition did not affect caspase-1 activation. These results highlight the complex role of STAT3 in cytokine production and the key role of STAT3 tyrosine phosphorylation in IL-1beta and IL-6 production in response to inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。