Selenium Supplementation Alters Hepatic Energy and Fatty Acid Metabolism in Mice

硒补充剂改变小鼠的肝脏能量和脂肪酸代谢

阅读:8
作者:Xin Hu, Joshua D Chandler, Michael L Orr, Li Hao, Ken Liu, Karan Uppal, Young-Mi Go, Dean P Jones

Background

Human and animal studies have raised concerns that supplemental selenium can increase the risk of metabolic disorders, but underlying mechanisms are unclear.

Conclusions

Supplemental selenium in mice alters hepatic fatty acid and energy metabolism and causes increases in body mass. A lack of effect on hepatic selenium content suggests that signaling involves an extrahepatic mechanism.

Methods

Male mice (8-wk-old, C57BL/6J) fed a standard diet (0.41 ppm Se) were given selenium (Na2SeO4, 20 μmol/L) or vehicle (drinking water) for 16 wk. Livers were analyzed for selenium concentration, activity of selenoproteins, reduced glutathione (GSH) redox state, gene expression, and high-resolution metabolomics. Transcriptomic and nontargeted metabolomic data were analyzed with biostatistics, bioinformatics, pathway enrichment analysis, and combined transcriptome-metabolome-wide association study (TMWAS).

Objective

We used an integrated transcriptome and metabolome analysis of liver to test for functional pathway and network responses to supplemental selenium in mice.

Results

Mice supplemented with selenium had greater body mass gain from baseline to 16 wk (55% ± 5%) compared with controls (40% ± 3%) (P < 0.05); however, no difference was observed in liver selenium content, selenoenzyme transcripts, or enzyme activity. Selenium was higher in the heart, kidney, and urine of mice supplemented with selenium. Gene enrichment analysis showed that supplemental selenium altered pathways of lipid and energy metabolism. Integrated transcriptome and metabolome network analysis showed 2 major gene-metabolite clusters, 1 centered on the transcript for the bidirectional glucose transporter 2 (Glut2) and the other centered on the transcripts for carnitine-palmitoyl transferase 2 (Cpt2) and acetyl-CoA acyltransferase (Acaa1). Pathway analysis showed that highly associated metabolites (P < 0.05) were enriched in fatty acid metabolism and bile acid biosynthesis, including acylcarnitines, triglycerides and glycerophospholipids, long-chain acyl-coenzyme As, phosphatidylcholines, and sterols. TMWAS of body weight gain confirmed changes in the same pathways. Conclusions: Supplemental selenium in mice alters hepatic fatty acid and energy metabolism and causes increases in body mass. A lack of effect on hepatic selenium content suggests that signaling involves an extrahepatic mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。