Distribution and regulatory roles of oxidized 5-methylcytosines in DNA and RNA of the basidiomycete fungi Laccaria bicolor and Coprinopsis cinerea

担子菌Laccaria bicolor和Coprinopsis cinerea的DNA和RNA中氧化5-甲基胞嘧啶的分布和调控作用

阅读:6
作者:Janina Ličytė, Kotryna Kvederavičiūtė, Audronė Rukšėnaitė, Eglė Godliauskaitė, Povilas Gibas, Vita Tomkutė, Gražina Petraitytė, Viktoras Masevičius, Saulius Klimašauskas, Edita Kriukienė

Abstract

The formation of three oxidative DNA 5-methylcytosine (5mC) modifications (oxi-mCs)-5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC)-by the TET/JBP family of dioxygenases prompted intensive studies of their functional roles in mammalian cells. However, the functional interplay of these less abundant modified nucleotides in other eukaryotic lineages remains poorly understood. We carried out a systematic study of the content and distribution of oxi-mCs in the DNA and RNA of the basidiomycetes Laccaria bicolor and Coprinopsis cinerea, which are established models to study DNA methylation and developmental and symbiotic processes. Quantitative liquid chromatography-tandem mass spectrometry revealed persistent but uneven occurrences of 5hmC, 5fC and 5caC in the DNA and RNA of the two organisms, which could be upregulated by vitamin C. 5caC in RNA (5carC) was predominantly found in non-ribosomal RNA, which potentially includes non-coding, messenger and small RNA species. Genome-wide mapping of 5hmC and 5fC using the single CG analysis techniques hmTOP-seq and foTOP-seq pointed at involvement of oxi-mCs in the regulation of gene expression and silencing of transposable elements. The implicated diverse roles of 5mC and oxi-mCs in the two fungi highlight the epigenetic importance of the latter modifications, which are often neglected in standard whole-genome bisulfite analyses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。