Trace Metal Availability Affects Greenhouse Gas Emissions and Microbial Functional Group Abundance in Freshwater Wetland Sediments

微量金属的可用性影响淡水湿地沉积物中的温室气体排放和微生物功能群的丰度

阅读:6
作者:Georgios Giannopoulos, Katherine R Hartop, Bonnie L Brown, Bongkeun Song, Lars Elsgaard, Rima B Franklin

Abstract

We investigated the effects of trace metal additions on microbial nitrogen (N) and carbon (C) cycling using freshwater wetland sediment microcosms amended with micromolar concentrations of copper (Cu), molybdenum (Mo), iron (Fe), and all combinations thereof. In addition to monitoring inorganic N transformations (NO3 -, NO2 -, N2O, NH4 +) and carbon mineralization (CO2, CH4), we tracked changes in functional gene abundance associated with denitrification (nirS, nirK, nosZ), dissimilatory nitrate reduction to ammonium (DNRA; nrfA), and methanogenesis (mcrA). With regards to N cycling, greater availability of Cu led to more complete denitrification (i.e., less N2O accumulation) and a higher abundance of the nirK and nosZ genes, which encode for Cu-dependent reductases. In contrast, we found sparse biochemical evidence of DNRA activity and no consistent effect of the trace metal additions on nrfA gene abundance. With regards to C mineralization, CO2 production was unaffected, but the amendments stimulated net CH4 production and Mo additions led to increased mcrA gene abundance. These findings demonstrate that trace metal effects on sediment microbial physiology can impact community-level function. We observed direct and indirect effects on both N and C biogeochemistry that resulted in increased production of greenhouse gasses, which may have been mediated through the documented changes in microbial community composition and shifts in functional group abundance. Overall, this work supports a more nuanced consideration of metal effects on environmental microbial communities that recognizes the key role that metal limitation plays in microbial physiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。