Disruption of adaptive energy metabolism and elevated ribosomal p-S6K1 levels contribute to INCL pathogenesis: partial rescue by resveratrol

适应性能量代谢紊乱和核糖体 p-S6K1 水平升高导致 INCL 发病:白藜芦醇可部分挽救

阅读:6
作者:Hui Wei, Zhongjian Zhang, Arjun Saha, Shiyong Peng, Goutam Chandra, Zenaide Quezado, Anil B Mukherjee

Abstract

The infantile neuronal ceroid lipofuscinosis (INCL) is a devastating neurodegenerative lysosomal storage disease. Despite our knowledge that palmitoyl-protein thioesterase-1 (PPT1)-deficiency causes INCL, the molecular mechanism(s) of neurodegeneration and the drastically reduced lifespan of these patients remain poorly understood. Consequently, an effective treatment for this disease is currently unavailable. We previously reported that oxidative stress-mediated abnormality in mitochondria activates caspases-9 pathway of apoptosis in INCL fibroblasts and in neurons of Ppt1-knockout (Ppt1-KO) mice, which mimic INCL. Since mitochondria play critical roles in maintaining cellular energy homeostasis, we hypothesized that oxidative stress-mediated disruption of energy metabolism and homeostasis may contribute to INCL pathogenesis. We report here that, in cultured INCL fibroblasts and in the brain tissues of Ppt1-KO mice, the NAD(+)/NADH ratio, the levels of phosphorylated-AMPK (p-AMPK), peroxisome proliferator-activated receptor-γ (PPARγ) coactivator-1α (PGC-1α) and Silent Information Regulator T1 (SIRT1) are markedly down-regulated. This suggested an abnormality in AMPK/SIRT1/PGC-1α signaling pathway of energy metabolism. Moreover, we found that, in INCL fibroblasts and in the Ppt1-KO mice, phosphorylated-S6K-1 (p-S6K1) levels, which inversely correlate with lifespan, are markedly elevated. Most importantly, resveratrol (RSV), an antioxidant polyphenol, elevated the NAD(+)/NADH ratio, levels of ATP, p-AMPK, PGC-1α and SIRT1 while decreasing the level of p-S6K1 in both INCL fibroblasts and in Ppt1-KO mice, which showed a modest increase in lifespan. Our results show that disruption of adaptive energy metabolism and increased levels of p-S6K1 are contributing factors in INCL pathogenesis and provide the proof of principle that small molecules such as RSV, which alleviate these abnormalities, may have therapeutic potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。