Structure and function of Bs 164 β-mannosidase from Bacteroides salyersiae the founding member of glycoside hydrolase family GH164

糖苷水解酶家族 GH164 的创始成员萨利耶拟杆菌 Bs 164 β-甘露糖苷酶的结构和功能

阅读:3
作者:Zachary Armstrong, Gideon J Davies

Abstract

Recent work exploring protein sequence space has revealed a new glycoside hydrolase (GH) family (GH164) of putative mannosidases. GH164 genes are present in several commensal bacteria, implicating these genes in the degradation of dietary glycans. However, little is known about the structure, mechanism of action, and substrate specificity of these enzymes. Herein we report the biochemical characterization and crystal structures of the founding member of this family (Bs164) from the human gut symbiont Bacteroides salyersiae. Previous reports of this enzyme indicated that it has α-mannosidase activity, however, we conclusively show that it cleaves only β-mannose linkages. Using NMR spectroscopy, detailed enzyme kinetics of WT and mutant Bs164, and multiangle light scattering we found that it is a trimeric retaining β-mannosidase, that is susceptible to several known mannosidase inhibitors. X-ray crystallography revealed the structure of Bs164, the first known structure of a GH164, at 1.91 Å resolution. Bs164 is composed of three domains: a (β/α)8 barrel, a trimerization domain, and a β-sandwich domain, representing a previously unobserved structural-fold for β-mannosidases. Structures of Bs164 at 1.80-2.55 Å resolution in complex with the inhibitors noeuromycin, mannoimidazole, or 2,4-dinitrophenol 2-deoxy-2-fluoro-mannoside reveal the residues essential for specificity and catalysis including the catalytic nucleophile (Glu-297) and acid/base residue (Glu-160). These findings further our knowledge of the mechanisms commensal microbes use for nutrient acquisition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。