Oxy-Butane Ablation Testing of Thermal Protection Systems Based on Nanomodified Phenolic Resin Matrix Materials

基于纳米改性酚醛树脂基体材料的热防护系统的氧丁烷烧蚀测试

阅读:6
作者:George Pelin, Cristina Elisabeta Pelin, Adriana Stefan, Violeta Tsakiris, Alexandra Ana Maria Panait, Emil Costea

Abstract

Two classes of thermal protection systems composed of a carbon-fibre-reinforced (CFRP) layer and an ablative material layer joined with a thermo-resistant ceramic adhesive were developed. The two classes differ in the composition of the ablative material reinforcing compound. In the first class, the ablative material is based on micronic-sized cork granules, and in the second class, the ablative material is reinforced with carbonic felt. For both classes of thermal protection systems, the reinforcement material was impregnated in simple phenolic resin, and nanometric additive, consisting of silicon carbide nanoparticles added in two different weight contents (1 and 2% by weight) relative to the resin. The thermal conductivity for the ablative materials in the thermal protection systems structure was determined. A test facility using oxy-butane flame was developed through which the thermal protection systems developed were tested at extreme temperatures, to simulate some thermal conditions in space applications. The materials were characterised from a morphostructural point of view using optical and scanning electron microscopy after thermal testing. The TPS composed of the carbon-felt-based ablative layer showed improved behaviour compared to the cork-based ablative ones in terms of the temperature increase rate during thermal conductivity testing, mass loss, as well as morphostructural appearance and material erosion after oxy-butane testing. The nSiC-based samples in both sets of TPSs showed improved behaviour compared to the un-filled ones, considering the temperature increase, mass loss, and morphostructure of the eroded material.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。