Multiscale Study of the Effect of Fiber Twist Angle and Interface on the Viscoelasticity of 2D Woven Composites

纤维扭转角和界面对二维机织复合材料粘弹性影响的多尺度研究

阅读:5
作者:Beibei Li, Cheng Liu, Xiaoyu Zhao, Jinrui Ye, Fei Guo

Abstract

Time and temperature affect the viscoelasticity of woven composites, and thus affect their long-term mechanical properties. We develop a multiscale method considering fiber twist angle and interfaces to predict viscoelasticity. The multiscale approach is based on homogenization theory and the time-temperature superposition principle (TTSP). It is carried out in two steps. Firstly, the effective viscoelasticity properties of yarn are calculated using microscale homogenization; yarn comprises elastic fibers, interface, and a viscoelastic matrix. Subsequently, the effective viscoelasticity properties of woven composites are computed by mesoscale homogenization; it consists of homogenized viscoelastic yarns and matrix. Moreover, the multiscale method is verified using the Mechanics of Structure genome (MSG) consequence. Finally, the effect of temperature, fiber twist angle, fiber array, and coating on either the yarn's effective relaxation stiffness or the relaxation moduli of the woven composite is investigated. The results show that increased temperature shortens the relaxation time of viscoelastic woven composites, and fiber twist angle affects tensors in the relaxation stiffness matrix of the yarn; the coating affects the overall mechanical properties of woven composites as well.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。