An Unbiased Approach to Identifying Cellular Reprogramming-Inducible Enhancers

识别细胞重编程诱导增强子的公正方法

阅读:9
作者:Eleftheria Klagkou, Dimitrios Valakos, Spyros Foutadakis, Alexander Polyzos, Angeliki Papadopoulou, Giannis Vatsellas, Dimitris Thanos

Abstract

Cellular reprogramming of somatic cells towards induced pluripotency is a multistep stochastic process mediated by the transcription factors Oct4, Sox2, Klf4 and c-Myc (OSKM), which orchestrate global epigenetic and transcriptional changes. We performed a large-scale analysis of integrated ChIP-seq, ATAC-seq and RNA-seq data and revealed the spatiotemporal highly dynamic pattern of OSKM DNA binding during reprogramming. We found that OSKM show distinct temporal patterns of binding to different classes of pluripotency-related enhancers. Genes involved in reprogramming are regulated by the coordinated activity of multiple enhancers, which are sequentially bound by OSKM for strict transcriptional control. Based on these findings, we developed an unbiased approach to identify Reprogramming-Inducible Enhancers (RIEs), constructed enhancer-traps and isolated cells undergoing reprogramming in real time. We used a representative RIE taken from the Upp1 gene fused to Gfp and isolated cells at different time-points during reprogramming and found that they have unique developmental capacities as they are reprogrammed with high efficiency due to their distinct molecular signatures. In conclusion, our experiments have led to the development of an unbiased method to identify and isolate reprogrammable cells in real time by exploiting the functional dynamics of OSKM, which can be used as efficient reprogramming biomarkers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。