Specialty supplement use and biologic measures of oxidative stress and DNA damage

特殊补充剂的使用以及氧化应激和 DNA 损伤的生物学测量

阅读:5
作者:Elizabeth D Kantor, Cornelia M Ulrich, Robert W Owen, Peter Schmezer, Marian L Neuhouser, Johanna W Lampe, Ulrike Peters, Danny D Shen, Thomas L Vaughan, Emily White

Background

Oxidative stress and resulting cellular damage have been suggested to play a role in the etiology of several chronic diseases, including cancer and cardiovascular disease. Identifying factors associated with reduced oxidative stress and resulting damage may guide future disease-prevention strategies.

Conclusions

Use of certain specialty supplements may be associated with reduced oxidative stress and DNA damage. Impact: Further research is needed to evaluate the association between specialty supplement use and markers of oxidative stress and DNA damage.

Methods

In the VITamins And Lifestyle (VITAL) biomarker study of 209 persons living in the Seattle area, we examined the association between current use of several specialty supplements and oxidative stress, DNA damage, and DNA repair capacity. Use of glucosamine, chondroitin, fish oil, methylsulfonylmethane (MSM), coenzyme Q10 (CoQ10), ginseng, ginkgo, and saw palmetto was ascertained by a supplement inventory/interview, whereas the use of fiber supplements was ascertained by questionnaire. Supplements used by more than 30 persons (glucosamine and chondroitin) were evaluated as the trend across number of pills/week (non-use, <14 pills/week, 14+ pills/week), whereas less commonly used supplements were evaluated as use/non-use. Oxidative stress was measured by urinary 8-isoprostane and PGF2α concentrations using enzyme immunoassays (EIA), whereas lymphocyte DNA damage and DNA repair capacity were measured using the Comet assay. Multivariate-adjusted linear regression was used to model the associations between supplement use and oxidative stress/DNA damage.

Results

Use of glucosamine (Ptrend: 0.01), chondroitin (Ptrend: 0.003), and fiber supplements (P: 0.01) was associated with reduced PGF2α concentrations, whereas CoQ10 supplementation was associated with reduced baseline DNA damage (P: 0.003). Conclusions: Use of certain specialty supplements may be associated with reduced oxidative stress and DNA damage. Impact: Further research is needed to evaluate the association between specialty supplement use and markers of oxidative stress and DNA damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。