Bioorthogonal Noncanonical Amino Acid Tagging (BONCAT) Enables Time-Resolved Analysis of Protein Synthesis in Native Plant Tissue

生物正交非规范氨基酸标记 (BONCAT) 可实现天然植物组织中蛋白质合成的时间分辨分析

阅读:4
作者:Weslee S Glenn, Shannon E Stone, Samuel H Ho, Michael J Sweredoski, Annie Moradian, Sonja Hess, Julia Bailey-Serres, David A Tirrell

Abstract

Proteomic plasticity undergirds stress responses in plants, and understanding such responses requires accurate measurement of the extent to which proteins levels are adjusted to counter external stimuli. Here, we adapt bioorthogonal noncanonical amino acid tagging (BONCAT) to interrogate protein synthesis in vegetative Arabidopsis (Arabidopsis thaliana) seedlings. BONCAT relies on the translational incorporation of a noncanonical amino acid probe into cellular proteins. In this study, the probe is the Met surrogate azidohomoalanine (Aha), which carries a reactive azide moiety in its amino acid side chain. The azide handle in Aha can be selectively conjugated to dyes and functionalized beads to enable visualization and enrichment of newly synthesized proteins. We show that BONCAT is sensitive enough to detect Arabidopsis proteins synthesized within a 30-min interval defined by an Aha pulse and that the method can be used to detect proteins made under conditions of light stress, osmotic shock, salt stress, heat stress, and recovery from heat stress. We further establish that BONCAT can be coupled to tandem liquid chromatography-mass spectrometry to identify and quantify proteins synthesized during heat stress and recovery from heat stress. Our results are consistent with a model in which, upon the onset of heat stress, translation is rapidly reprogrammed to enhance the synthesis of stress mitigators and is again altered during recovery. All experiments were carried out with commercially available reagents, highlighting the accessibility of the BONCAT method to researchers interested in stress responses as well as translational and posttranslational regulation in plants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。