Encoding extracellular modification of artificial cell membranes using engineered self-translocating proteins

使用工程自转运蛋白对人工细胞膜进行细胞外修饰编码

阅读:8
作者:Alexander Harjung, Alessandro Fracassi, Neal K Devaraj

Abstract

The development of artificial cells has led to fundamental insights into the functional processes of living cells while simultaneously paving the way for transformative applications in biotechnology and medicine. A common method of generating artificial cells is to encapsulate protein expression systems within lipid vesicles. However, to communicate with the external environment, protein translocation across lipid membranes must take place. In living cells, protein transport across membranes is achieved with the aid of complex translocase systems which are difficult to reconstitute into artificial cells. Thus, there is need for simple mechanisms by which proteins can be encoded and expressed inside synthetic compartments yet still be externally displayed. Here we present a genetically encodable membrane functionalization system based on mutants of pore-forming proteins. We modify the membrane translocating loop of α-hemolysin to translocate functional peptides up to 52 amino acids across lipid membranes. Full membrane translocation occurs in the absence of any translocase machinery and the translocated peptides are recognized by specific peptide-binding ligands on the opposing membrane side. Engineered hemolysins can be used for genetically programming artificial cells to display interacting peptide pairs, enabling their assembly into artificial tissue-like structures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。