Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis

复合氧化物多功能位点中的氢溢出改善了酸性析氢电催化

阅读:8
作者:Jie Dai #, Yinlong Zhu #, Yu Chen, Xue Wen, Mingce Long, Xinhao Wu, Zhiwei Hu, Daqin Guan, Xixi Wang, Chuan Zhou, Qian Lin, Yifei Sun, Shih-Chang Weng, Huanting Wang, Wei Zhou, Zongping Shao0

Abstract

Improving the catalytic efficiency of platinum for the hydrogen evolution reaction is valuable for water splitting technologies. Hydrogen spillover has emerged as a new strategy in designing binary-component Pt/support electrocatalysts. However, such binary catalysts often suffer from a long reaction pathway, undesirable interfacial barrier, and complicated synthetic processes. Here we report a single-phase complex oxide La2Sr2PtO7+δ as a high-performance hydrogen evolution electrocatalyst in acidic media utilizing an atomic-scale hydrogen spillover effect between multifunctional catalytic sites. With insights from comprehensive experiments and theoretical calculations, the overall hydrogen evolution pathway proceeds along three steps: fast proton adsorption on O site, facile hydrogen migration from O site to Pt site via thermoneutral La-Pt bridge site serving as the mediator, and favorable H2 desorption on Pt site. Benefiting from this catalytic process, the resulting La2Sr2PtO7+δ exhibits a low overpotential of 13 mV at 10 mA cm-2, a small Tafel slope of 22 mV dec-1, an enhanced intrinsic activity, and a greater durability than commercial Pt black catalyst.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。