The nucleolus exhibits an osmotically regulated gatekeeping activity that controls the spatial dynamics and functions of nucleolin

核仁表现出渗透调节的守门活性,控制核仁素的空间动态和功能

阅读:4
作者:Ling Yang, Jeff M Reece, Jaiesoon Cho, Carl D Bortner, Stephen B Shears

Abstract

We demonstrate that physiologically relevant perturbations in the osmotic environment rheostatically regulate a gatekeeping function for the nucleolus that controls the spatial dynamics and functions of nucleolin. HeLa cells and U2-OS osteosarcoma cells were osmotically challenged with 100-200 mm sorbitol, and the intranuclear distribution of nucleolin was monitored by confocal microscopy. Nucleolin that normally resides in the innermost fibrillar core of the nucleolus, where it assists rDNA transcription and replication, was expelled within 30 min of sorbitol addition. The nucleolin was transferred into the nucleoplasm, but it distributed there non-uniformly; locally high levels accumulated in 4',6-diamidino-2-phenylindole-negative zones containing euchromatic (transcriptionally active) DNA. Inositol pyrophosphates also responded within 30 min of hyperosmotic stress: levels of bisdiphosphoinositol tetrakisphosphate increased 6-fold, and this was matched by decreased levels of its precursor, diphosphoinositol pentakisphosphate. Such fluctuations in inositol pyrophosphate levels are of considerable interest, because, according to previously published in vitro data, they regulate the degree of phosphorylation of nucleolin through a novel kinase-independent phosphotransferase reaction ( Saiardi, A., Bhandari, A., Resnick, R., Cain, A., Snowman, A. M., and Snyder, S. H. (2004) Science 306, 2101-2105 ). However, by pharmacologically intervening in inositol pyrophosphate metabolism, we found that it did not supervise the osmotically driven switch in the biological activities of nucleolin in vivo.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。