The development of murine bone marrow-derived mast cells expressing functional human MRGPRX2 for ex vivo and in vivo studies

构建表达功能性人MRGPRX2的小鼠骨髓来源肥大细胞,用于体外和体内研究

阅读:1
作者:Maram Bawazir ,Saptarshi Roy ,Hydar Ali

Abstract

Introduction: A subtype of human mast cells (MCs) found in the skin and to a lesser extent in the lung and gut express a novel G protein-coupled receptor (GPCR) known as Mas-related GPCR-X2 (MRGPRX2, mouse counterpart MrgprB2). In addition to drug-induced pseudoallergy and cutaneous disorders, MrgprB2 contributes to ulcerative colitis, IgE-mediated lung inflammation and systemic anaphylaxis. Interestingly, most agonists activate MRGPRX2 with higher potency than MrgprB2. In this study, we sought to replace mouse MrgprB2 with human MRGPRX2 and to study receptor function ex vivo and in vivo. Methods: MrgprB2-/- bone marrow (BM) cells were transduced with retrovirus encoding MRGPRX2 and differentiated into BMMCs (MRGRPX2-BMMCs) ex vivo. Cell surface MRGPRX2 expression was determined by flow cytometry. Effects of substance P (SP) and LL-37 on Ca2+ mobilization, degranulation and TNF-α generation were determined. MRGPRX2-BMMCs were engrafted intraperitoneally into MC-deficient Wsh/Wsh mice. After 6-8 weeks, immunofluorescence staining was performed on peritoneal lavage cells (PLCs), and sections of small intestine and colon with anti c-Kit and anti-MRGPRX2 antibodies. SP-induced degranulation in PLCs obtained from engrafted mice was determined. Results: MRGPRX2-BMMCs expressed cell surface MRGPRX2 and responded to both SP and LL-37 for Ca2+ mobilization, degranulation and TNF-α generation. Furthermore, Wsh/Wsh mice engrafted with MRGPRX2-BMMCs expressed the receptor in peritoneal, intestinal and colonic MCs. In addition, PLCs from engrafted mice responded to SP for degranulation. Conclusion: Replacing mouse MrgprB2 with functional human MRGPRX2 in primary BMMCs and their engraftment in MC-deficient mice demonstrated the expression of this receptor in different tissues, which provides unique opportunities to study receptor signaling ex vivo and disease phenotype in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。