Phosphorylation of multiple sites within an acidic region of Alcadein α is required for kinesin-1 association and Golgi exit of Alcadein α cargo

Alcadein α 酸性区域内多个位点的磷酸化是驱动蛋白-1 结合和 Alcadein α 货物从高尔基体退出的必要条件

阅读:8
作者:Yuriko Sobu, Keiko Furukori, Kyoko Chiba, Angus C Nairn, Masataka Kinjo, Saori Hata, Toshiharu Suzuki

Abstract

Alcadein α (Alcα) is a major cargo of kinesin-1 that is subjected to anterograde transport in neuronal axons. Two tryptophan- and aspartic acid-containing (WD) motifs located in its cytoplasmic domain directly bind the tetratricopeptide repeat (TPR) motifs of the kinesin light chain (KLC), which activate kinesin-1 and recruit kinesin-1 to Alcα cargo. We found that phosphorylation of three serine residues in the acidic region located between the two WD motifs is required for interaction with KLC. Phosphorylation of these serine residues may alter the disordered structure of the acidic region to induce direct association with KLC. Replacement of these serines with Ala results in a mutant that is unable to bind kinesin-1, which impairs exit of Alcα cargo from the Golgi. Despite this deficiency, the compromised Alcα mutant was still transported, albeit improperly by vesicles following missorting of the Alcα mutant with amyloid β-protein precursor (APP) cargo. This suggests that APP partially compensates for defective Alcα in anterograde transport by providing an alternative cargo receptor for kinesin-1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。