Induction of the integrated stress response in the rat cornea

诱导大鼠角膜综合应激反应

阅读:6
作者:C Peterson, Y C Kim, L M Ensign, A S Jun, J Foster

Abstract

Keratoconus (KC), a progressive, degenerative corneal disease, represents the second leading indication for corneal transplantation globally. We have previously demonstrated that components of the Integrated Stress Response (ISR) are upregulated in human keratoconic donor tissue, and treatment of normal tissue with ISR agonists attenuates collagen production. With no consistently accepted animal models available for translational KC research, we sought to establish an in vivo model based on ISR activation to elucidate its role in the development of the KC phenotype. Four-week-old female SD rats were treated with topical SAL003 formulated as a nanosuspension or vehicle every 48 h for four doses. Animals were subject to monitoring for ocular inflammation and discomfort before being euthanized at 1, 14, or 28 days after treatment was withdrawn. Schirmer's tear test, intraocular pressure, and body weight measurements were obtained at baseline and prior to euthanasia. Globes were subject to routine histopathology, immunohistochemistry for ATF4, and qPCR for Col1a1 expression. ANOVAs and Student's t tests were used to assess statistical significance (α = 0.05). SAL003 treatment did not produce any adverse ocular or systemic phenotype but did result in decreased keratocyte density. Col1a1 transcripts were reduced, corresponding to nuclear ATF4 expression within the axial cornea. In vivo topical treatment with a gel-formulated ISR agonist recapitulates key features of the activated ISR including nuclear ATF4 expression and decreased extracellular matrix (ECM) production. Exogenous ISR agonists may present one approach to establishing a rodent model for keratoconus, a charge essential for future evaluations of pathogenesis and therapeutic interventions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。